5 research outputs found

    Field thermal monitoring during the August 2003 eruption at Piton de la Fournaise (La Réunion )

    No full text
    International audience[1] A detailed set of thermal images collected during the last day of the August 2003 eruption of Piton de la Fournaise (La Réunion), clearly revealed several dynamic processes associated with a spatter cone containing a lava pond and feeding a channelized lava flow. Periods of steady effusion were interrupted by brief pulses of lava effusion that closely coincide with peaks in seismic tremor amplitude. The thermal measurements show that roofing of a lava channel during steady effusion and cooling of surface flows decrease thermal radiance in two different ways. Here we show that the decrease in thermal radiance because of channel roofing is not related to a decrease in volcanic activity, as might be interpreted from satellite data. In addition, we introduce a new method of representing thermal data (hereby named ''Radiative Thermogramme'') that successfully describes thermal patterns produced by distinct eruptive processes within the same span of time. This graphic solution can be directly correlated with volcanic field processes and provides a useful tool for interpreting a high number of thermal data in a wide range of volcanic activities

    The redox state of arc mantle using Zn/Fe systematics

    No full text
    International audienceMany arc lavas are more oxidized than mid-ocean-ridge basalts and subduction introduces oxidized components into the mantle(1-4). As a consequence, the sub-arc mantle wedge is widely believed to be oxidized(3,5). The Fe oxidation state of sub-arc mantle is, however, difficult to determine directly, and debate persists as to whether this oxidation is intrinsic to the mantle source(6,7). Here we show that Zn/Fe-T (where Fe-T = Fe2+ + Fe3+) is redox-sensitive and retains a memory of the valence state of Fe in primary arc basalts and their mantle sources. During melting of mantle peridotite, Fe2+ and Zn behave similarly, but because Fe3+ is more incompatible than Fe2+, melts generated in oxidized environments have low Zn/Fe-T. Primitive arc magmas have identical Zn/Fe-T to mid-ocean-ridge basalts, suggesting that primary mantle melts in arcs and ridges have similar Fe oxidation states. The constancy of Zn/Fe-T during early differentiation involving olivine requires that Fe3+/Fe-T remains low in the magma. Only after progressive fractionation does Fe3+/Fe-T increase and stabilize magnetite as a fractionating phase. These results suggest that subduction of oxidized crustal material may not significantly alter the redox state of the mantle wedge. Thus, the higher oxidation states of arc lavas must be in part a consequence of shallow-level differentiation processes, though such processes remain poorly understood
    corecore